

Slide 2

Slide 3

tRNA On this model of a tRNA molecule, identify each of the following: - 5' and 3' ends - hydrogen bonds - unpaired regions - anticodon loop - binding site for amino acid - sequence that pairs with mRNA

Slide 5

Slide 8

Slide 9

Building a Polypeptide

- · The three stages of translation:
 - Initiation
 - Elongation
 - Termination
- All three stages require protein "factors" that aid in the translation process

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

Slide 11

The final product of an expressed gene can be which of the following?

Find all of the correct choices.

- a. mRNA
- b. tRNA
- c. rRNA
- d. polypeptide

Slide 14

Slide 16	Completing and Targeting the Functional Protein	
	Often translation is not sufficient to make a	
	functional proteinWhat events happen after translation?	
	whatevents happen and translation:	
	Copyright © 2008 Pozeson Education Inc., publishing as Pozeson Benjamin Cummings	
Ol. 1. 4.		1
Slide 17	Protein Folding and Post-Translational Modifications	
	 During and after synthesis, a polypeptide chain spontaneously (or with help) coils and folds into its three- dimensional shape 	
	Proteins may also require <u>post-translational modifications</u> before doing their job	
	– What are some modifications?	
	 Some polypeptides are activated by enzymes that <u>cleave</u> them – "pro- or pre- or pre-proproteins" 	
	Other polypeptides <u>come together</u> (interact) to form the subunits of a protein	
	Proteins have to be <u>targeted</u> to their proper location Cryptigk 0 200 Reason Blacation for _publishing a Parent Benjama Comming	
	скуруций имо таков ком на-расской раз таков морим с интерр	
Slide 18	Targeting Polypeptides to Specific Locations	1
Sline 10	Targeting 1 otypeptiaes to Specific Locations	
	 Two populations of ribosomes are evident in cells: free ribsomes (in the cytosol) and bound ribosomes (attached to the ER) 	
	Free ribosomes mostly synthesize proteins that function in the cytosol	
	 Bound ribosomes make proteins of the endomembrane system and proteins that are secreted from the cell 	
	Ribosomes are identical and can switch from free to bound	
	Copyright © 2008 Four-on Education Inc., publishing as Pour-on Bonjamin Cummings	

Fi- 47.74	
Ribosome mRNA — Signal peptide peptide Signation particle (SRP)	Signal Protein removed
ER LUMEN SRP receptor protein	

- Polypeptides destined for the ER or for secretion are marked by a signal peptide
- A signal-recognition particle (SRP) binds to the signal peptide
- The SRP brings the signal peptide and its ribosome to the ER

Slide 20

<u>Transcription and Translation</u>
Of the following, which pertain to transcription, post-transcriptional modification, or translation?

- stop codon peptide bond P site

- GTP
- · amino-acid synthetase
- Poly A tail
- ribosome
- anticodon
- promoter terminator sequence
- tRNA
- 5' cap
- Spliceosome5' and 3' UTRRNA pol

Comparing Gene Expression in Bacteria, Archaea, and Eukarya

- While gene expression differs among the domains of life, the concept of a gene is universal
- Bacteria and eukarya differ in their RNA polymerases, termination of transcription and ribosomes; archaea tend to resemble eukarya in these respects
- Bacteria can simultaneously transcribe and translate the same gene
- In eukarya, transcription and translation are separated by the nuclear envelope
- In archaea, transcription and translation are likely coupled

Commists C 2008 Pennon Education Inc., publishing as Pennon Benjamin Commisses

Slide 23

What Is a Gene? Revisiting the Question

- The idea of the gene itself is a unifying concept of life
- We have considered a gene as:
 - A discrete unit of inheritance (coming soon...)
 - A region of specific nucleotide sequence in a chromosome
- A DNA sequence that codes for a specific polypeptide chain
- In summary, a gene can be defined as a region of DNA that can be expressed to produce a final functional product, either a polypeptide or an RNA molecule

opyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 24

The Effect of Mutations on Protein Function

- Mutations are changes in the genetic material of a cell or virus (due to spontaneous mutations during replication or physical/chemical agents)
- Point mutations are changes in just one nucleotide/base pair of a gene
- The change of a single nucleotide in a DNA template strand <u>can</u> lead to the production of an abnormal protein (but might not)

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cumming

Slide 26

Types of Point Mutations Point mutations within a gene can be divided into two general categories 1. Base-pair substitutions 1. Base-pair insertions or deletions

Substitutions

- A base-pair substitution replaces one nucleotide and its complimentary base with another pair of nucleotides
- Silent mutations have no effect on the amino acid produced by a codon because of redundancy in the genetic code
- Missense mutations still code for an amino acid, but not necessarily the right amino acid
- Nonsense mutations change an amino acid codon into a stop codon, nearly always leading to a nonfunctional protein (early termination)

convicto C 2008 Pennon Education Inc., red-Substances Pennon Revisionin Commissa

Slide 29

Insertions and Deletions

- Insertions and deletions are additions or losses of nucleotide pairs in a gene
- These mutations have a disastrous effect on the resulting protein more often than substitutions do
- Insertion or deletion of nucleotides may alter the reading frame, producing a frameshift mutation (change in reading frame)

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

-	 	 	 	 	
_	 		 		
-	 	 	 	 	
_	 	 	 	 	
-	 			 	
-	 	 	 	 	
-	 	 	 	 	
_	 		 	 	
-	 	 	 	 	
_	 		 	 	
-	 	 	 	 	
_	 		 		